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Abstract

The clinical electroretinogram (ERG) is a non-invasive diagnostic test used to assess the
functional state of the retina by recording changes in the bioelectric potential following
brief flashes of light. The recorded ERG waveform offers ways for diagnosing both retinal
dystrophies and neurological disorders such as autism spectrum disorder (ASD), attention
deficit hyperactivity disorder (ADHD), and Parkinson’s disease. In this study, different
time-series-based machine learning methods were used to classify ERG signals from ASD
and typically developing individuals with the aim of interpreting the decisions made by the
models to understand the classification process made by the models. Among the time-series
classification (TSC) algorithms, the Random Convolutional Kernel Transform (ROCKET)
algorithm showed the most accurate results with the fewest number of predictive errors.
For the interpretation analysis of the model predictions, the SHapley Additive exPlanations
(SHAP) algorithm was applied to each of the models’ predictions, with the ROCKET and
KNeighborsTimeSeriesClassifier (TS-KNN) algorithms showing more suitability for ASD
classification as they provided better-defined explanations by discarding the uninformative
non-physiological part of the ERG waveform baseline signal and focused on the time
regions incorporating the clinically significant a- and b-waves of the ERG. With the potential
broadening scope of practice for visual electrophysiology within neurological disorders,
TSC may support the identification of important regions in the ERG time series to support
the classification of neurological disorders and potential retinal diseases.

Keywords: neurodevelopment; retina; electroretinogram; waveform; explainable AI;
time-series classification

1. Introduction
The clinical electroretinogram (ERG) is an important non-invasive diagnostic test used

in ophthalmology to assess the functional state of the retina by recording the changes in the
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bioelectrical potential obtained following brief flashes of light. The shape of the recorded
ERG signal or “waveform” varies depending on the state of light or dark adaptation
of the retina and the stimulating flash parameters (duration, strength, frequency, and
spectral composition) [1]. Interpretation of the ERG waveform supports diagnosis in retinal
conditions [2] and disorders affecting the broader central nervous system [3]. One potential
use of the ERG is in the classification of neurodevelopmental disorders such as autism
spectrum disorder (ASD) [4–6].

The light-adapted ERG signal consists of two main components, designated the a-
and b-waves, shown in Figure 1. The a-wave is generated by the photoreceptors that
hyperpolarize following light onset, generating a negative deflection in the signal [7]. The
light-adapted b-wave is generated by the post-receptoral inner cells of the retina (bipolar,
amacrine, ganglion, and glial) with the summated combination of hyperpolarizing and
depolarizing currents from these cells contributing to the overall shape and amplitude of
the positive b-wave [8–10]. The Oscillatory Potentials (OPs) are high-frequency components
visible on the rising limb of the b-wave and originate in the amacrine cells [11]. The main
time domain features that are considered for clinical diagnoses are the amplitudes and
time to peaks of the principle a- and b-waves. In Figure 1, these parameters are denoted
as (Va, Ta) for the a-wave and (Vb, Tb) for the b-wave [1]. In ASD, the prominence of the
OPs has been reported to be atypical in adults [12] and younger cohorts [4]. In some cases,
other components of the ERG signal can also be considered [13]. Typically, the duration of
the clinical components of the ERG waveform ranges from 100 to approximately 250 ms,
depending on the clinical test, and the frequency range of the signal lies between 0 and
300 Hz [14]. However, the main informative characteristics of the signal may differ from
the protocols of recording for different clinical applications [15].

Figure 1 depicts light-adapted ERG waveforms with the negative a-wave and positive
b-wave labeled with the flash stimulus onset indicated by the white arrow. The amplitude
on the a-wave Va is measured from the baseline to the trough of the a-wave, and the
amplitude of the b-wave (Vb) is measured from the a-wave minima to the b-wave maxima.
The time to peaks is taken from the stimulus onset to the peak of the a- and b-waves (Ta
and Tb), respectively.

Figure 1. Illustration of a control (blue) and an ASD (green) light-adapted ERG signal. The amplitudes of
the a- and b-wave are denoted as Va and Vb and the time to peak of these peaks as Ta and Tb, respectively.
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ERG waveform analysis is generally based on the four aforementioned time-domain
features, which are typically extracted by a combination of manual inspection and in-built
algorithms to find the peaks of the principle a- and b-waves [1,16]. The high-frequency
OPs contained within the 75–300 Hz range are generally reported qualitatively and/or
quantitatively as the sum of the peaks, or individual peaks of interest [1]. OFF-line packages
are also available for analyzing the ERG signal into these time-domain components [17].

However, the specificity of these fixed time point features do not fully capture the
dynamic patterns of change in the ERG waveform. Developing novel approaches to ERG
signal analysis would allow the enhancement of the ERG response descriptions and, thus,
improve the precision of the analysis to expand the clinical utility of the ERG [18]. Previous
studies have implemented Fourier spectrum-based analysis, time-frequency methods
including short-time Fourier transform, and continuous wavelet transform and discrete
wavelets [16] that use a 2D power spectrum density or scalograms, corresponding to the
signal representation methods. The features of these representations can be extracted
either manually using classical machine learning algorithms [13] or automatically using
2D convolutional neural networks [19]. It should be noted that approaches that use the
1D neural network for ERG signal classification [20] that uses non-linear decision-making
algorithms can suffer from a lack of explainability [13,19]. To evaluate the shape or trajectory
of the ERG time series, an ideal model would extract important features that have a clinical
interpretation. To address this possibility, Time-Series Classification (TSC) methods for
signal classification provide native and accurate methods that can also be applied to the
ERG signal [21]. The advantages of these methods have been demonstrated in well-known
univariate [22] and multivariate datasets [23] as well as in several healthcare [24] and
industrial applications [25]. Most of the works in TSC do not include explainability analysis
issues, although some general attempts have recently been made [26–29].

From an application point of view, the explainability of machine learning algorithms
plays a critical role in medical decision support systems. The explainability shows the logic
of automatic decision-making systems, which directly affects the trustworthiness of the
system and increases the feeling of safety for patients. It also helps physicians to better
understand patient data and, on a deeper level, provides insights into the features that
affect the particular model’s decision making that might not be apparent during manual
feature extraction.

Recent studies have increasingly applied machine learning and advanced signal pro-
cessing in addition to traditional methods to ERG for neurodevelopmental and ophthalmic
diagnostics, including ASD, ADHD, and glaucoma, reflecting a growing interest in data-
driven approaches to retinal electrophysiology [6,30–32]. Additionally, several works have
demonstrated the potential of ERG-based phenotyping and time-series modeling for clinical
applications, supported by improvements in explainability, reproducibility, and integration
with psychometric or structural biomarkers [33].

Decision-making algorithms should take into account relevant clinical factors instead of
random correlations or biases in the data [34]. Explainability methods should be intuitively
understandable for health care practitioners and visually demonstrate the importance of
the data parts. Hence, of the evaluated explainable artificial intelligence methods, SHapley
Additive exPlanations (SHAP) appears to be most suited for capturing the time points relevant
for classification behavior [35]. In the case of TSC, explainability not only shows the points of
potential interest, but also highlights important time-dependent intervals (and their influence
on decisions) that provide more information for the clinician to analyze the algorithm’s result
in the appropriate clinical context [36,37]. As an example, for ASD, model explainability could
be useful in identifying which regions of the ERG signal influence the final prediction and
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which of these are affected the most/least in individuals with ASD compared with typically
developing individuals or other neurological disorders [3].

This paper illustrates the use of time-series-based machine learning methods to classify
ERG signals, with the aim of interpreting the decisions made by the models in order to
better understand the classification process. In this instance, the dataset comprises two
classes, ASD and control, but TSC could be used in any classification of disorders affecting
the ERG signal, whether they are neurological or retinal in origin. This work provides the
following contributions to the field of signal analysis:

• To the best of the authors’ knowledge, this is the first application of SHAP explanation
to the TSC algorithms’ results for an ERG signal classification task.

• SHAP methods were applied on the TSC models to provide a domain-agnostic expla-
nation, highlighting the important regions of the signals for classification.

The results were limited to the default implementation of machine learning TSC meth-
ods, which are found in related frameworks; see, for instance, sktime [38]. The results
obtained here using TSC could be considered as a baseline for further investigations in
ERG classification. SHAP implementation was also given in the original authors’ code
implementation [39].

Therefore, the aim of this study was to apply and evaluate TSC algorithms, combined
with SHAP-based explainability, to classify light-adapted ERG signals from individuals
with ASD and control participants, as well as to identify the most informative regions of
the ERG waveform contributing to the classification.

This paper is structured as follows: Section 2 discusses the data used for the study
and its characteristics as well as the time series models the data were trained on and the
implementation details including data splitting for training and testing, hyperparameter
tuning, and SHAP implementation for the model’s explainability. Section 3 presents the
results obtained, model evaluation, and analysis of implemented algorithms and discusses
observations and insights derived from the models’ results as well as the explainability
methods applied. Section 4 draws conclusion based on obtained results and insights
derived from the models and explainability techniques and what that means for the current
and future research.

2. Materials and Methods
2.1. Dataset

The dataset under consideration contained a total of 991 ERG light-adapted signals
taken from 30 ASD and 20 typically developing control participants [20,40]. The dataset
contained the following data: ID of the person, group (control or ASD), eye (left or right),
flash strength (1.204, 1.114, 0.949, 0.799, 0.602, 0.398, 0.114, −0.119, −0.367) log cd.s.m−2

denoting the various flash strengths used during the signal recording sessions. For further
details on the participants and recording methods, see prior works [6]. For this particular
study, the signal strength parameter 1.204 log cd.s.m−2 was used because this strength has
previously been shown to be a strong discriminator of the ASD and control groups [4,5].
In total, there were 153 unique IDs that satisfied such criteria, among them there were
88 control and 65 ASD signals. Before the machine learning procedure, the data were
randomly split into train and test subsets with a proportion of 80 to 20, stratifying by the
target column. The split was performed at the individual level so that the signals from
the eyes of one individual could only be in the train or the test subsets. Typical signals for
different flash strengths are shown in Figure 2. Visual analysis of Figure 2 shows a reduced
positive b-wave amplitude in the ASD cases.
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Figure 2. Illustration of a control (a) and ASD (b) ERG signal for different flash strengths (−0.367,
0.114, 0.799, and 1.204 log cd.s.m−2). Stimulus onset was at t = 20 ms. Note the reduced positive
b-wave amplitude in the 40 to 60 ms region for the ASD group.

2.2. Time Series Classification Models

The following machine learning algorithms for TSC were implemented in the sk-
time library [38] coupled with the explainability methods to provide high accuracy and
transparency in the decision-making process [27].

• Word extraction for TSC (WEASEL) is a dictionary-based classifier for time-series
data. The algorithm is based on the bag-of-patterns representation, which consists
of extracting sub-sequences of different lengths from the time series, discretizing
each sub-sequence into a coarsely discrete-valued word, then building a histogram
from word counts and training a logistic regression classifier on this bag [41]. In the
WEASEL case, it was expected that explainability allowed for highlighting which
symbolic patterns (e.g., specific wave chunks) or sub-sequences contributed most to
class classification.

• Time Series Forest (TSF) is an ensemble method for TSC that builds multiple decision
trees. The algorithm selects each tree in the forest through random selection of several
intervals with randomized lengths and positional offsets. For each sampled interval,
three statistical features are computed: the mean, the standard deviation, and the
slope. The features of each interval are then aggregated into a composite feature
vector that subsequently serves as the input feature space for the construction of a
decision tree. The resulting trees are then integrated into the ensemble model. The
random forest-like classifier algorithm is applied to all trees [42]. In the TSF case, it was
expected that explainability would allow the identification of the critical intervals that
corresponded to a clinically relevant interpretation of ERG signals for classification.

• KNeighborsTimeSeriesClassifier (TS-KNN) is an implementation of the k-nearest
neighbors algorithm specifically designed for time series with Dynamic Time Wrap-
ping Distance (DTW). DTW is an elastic distance measure that optimally compares two
sequences by warping them non-linearly in time. DTW was applied instead of the tra-
ditional Euclidean distance due to the robustness of signal delays (latency) and other
distortions in the time domain [43]. In the TS-KNN case, it was expected that explain-
ability would allow for the identification of waveform intervals that corresponded to
important patterns of behavior in the ERG signal for classification.

• Random Convolutional Kernel Transform (ROCKET) is a method for TSC based on 1D
convolution kernels with random parameter selection. It works by generating a large
variety of kernels, each containing different parameters (length, weight, dilation, etc.),
and applies these kernels to the data through convolution. Each convolution results in
two features, the positive value amount and the maximum value [44]. In this work a
random forest was applied to the vector of features obtained for 3000 kernels. In the
ROCKET case, it was expected that explainability would identify regions and points
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(e.g., a-wave amplitude) emphasized by the kernel emphasis, which correspond to
differences in retinal signaling between the groups for classification.

2.3. Hyperparameter Selection

The selection of hyperparameters in machine learning algorithms is a key step that can
significantly impact the performance of the model. Hyperparameters are parameters that
are not directly learned by the model, but are set in advance. Choosing these parameters
correctly can improve accuracy, avoid overfitting, and improve the generalization ability
of the model [45]. In this case, the Grid Search method was used, which involved testing
combinations of hyperparameters from given ranges. Conceptually, this process consisted
of a complete code execution cycle with an equal number of random_state values. To
ensure robustness of the evaluations, the repeated hold-out split (split into training and
test samples) was used at each step of the cycle.

At each stage of the cycle, the following conditions were applied:

• If there was no variation in hyperparameters in the algorithm, then it was run once
and the classification metrics values were saved to memory.

• If the algorithm had variations of hyperparameters, then it was run in the amount of
these variations and all of the obtained classification metrics were saved to memory.

After going through all possible variations of random_state in the loop, the mean,
median, and standard deviation were calculated for each model hyperparameter. The list
of the parameter values used is as follows:

• random_state —112, 1231, 42, 990, 2500, 467, 777, 89, 258, 24;
• n_estimators of the TSF algorithm—10, 50, 100, 200, 300, 400, 500;
• n_neighbors of the TS-KNN algorithm—1, 2, 3, 4, 5, 6, 7;
• num_kernels of the ROCKET algorithm—100, 1000, 10,000, 20,000, 30,000.

There were no hyperparameters for the WEASEL algorithm. The list of parameters
obtained from the algorithms used and for which the mean, median, and standard deviation
were calculated is as follows:

• F1-score (separately for control and ASD individuals;
• Balanced accuracy;
• Time for training.

2.4. Explaining TSC Models Using the SHAP Library

The SHAP (SHapley Additive exPlanations) library is a powerful tool for explaining
predictions of machine learning algorithms. The main idea of SHAP is to use game theory
to determine the contribution of each feature to the model’s predictions. The advantages of
SHAP include high accuracy of interpretation, applicability to various models (e.g., decision
trees, regression models) and convenient visualizations for feature analysis. Limitations of
SHAP are related to the computationally expensive process, especially for complex models
and large datasets [39].

SHAP does not directly support all types of models created with sktime, but it is
possible to use SHAP with models that support the scikit-learn interface, such as models
that implement the .fit() and .predict() methods. The algorithms used in this paper met this
requirement. The general approach is summarized as follows:

1. Train a time-series model using sktime.
2. Use the trained model to make predictions on the test data.
3. Apply SHAP to the model to obtain feature importance values.

As sktime models use the whole signal as the input, the SHAP library can be used to
test which part of the signal contributes to the model output. This then shows where the



Bioengineering 2025, 12, 951 7 of 26

SHAP algorithm decomposes prediction for a particular signal as a linear combination of
its time steps [39].

3. Results
3.1. Visual Inspection of the Signals

An average signal in the context of data analysis using machine learning algorithms is
often used to identify common patterns in data grouped by certain conditions or categories.
Visualization of a signal average can be presented in the form of the following plots, which
help to visually identify trends, anomalies, or differences between conditions. An average
signal for all control and all ASD participants was constructed from the original data and
is shown in Figure 3. The upper subplots represent the averaged signals for each group
(line indicates the mean value of the signal and surrounding area indicates ± one standard
deviation). The lower subplots show the individual signals for each group. Previous studies
using this dataset have highlighted the leading edge of the b-wave that contains the OPs as
being important for ASD classification [46]. Consequently, the time interval containing the
b-wave was given more importance for feature selection.

Figure 3. ERG signals for the control (top) and ASD (bottom) participants. Plots show the mean and
standard deviation of the signals (upper) and individual waveforms (lower) for the 1.204 cd.s.m−2
flash strength.
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Visual analysis of Figures 3 led to the following conclusions: the first 20 ms of the
signals were highly uninformative because this region represents the baseline or pre-
stimulus region. The interval containing the main response from 25 to 60 ms contained the
most likely interval with which features could be identified to classify the groups.

3.2. Model Evaluation

The machine learning TSC models WEASEL, TSF, TS-KNN, and ROCKET were tested
on the dataset described in Section 2.1. The models’ hyperparameters named in Section 2.3
were selected as follows. The Grid Search of the best hyperparameters was based on a
10× repeated train–test split with different random states.

After analyzing the obtained results, the best hyperparameters were selected
as follows:

• n_estimators of the TSF algorithm was 10.
• n_neighbors of the TS-KNN algorithm was 3.
• num_kernels of the ROCKET algorithm was 20,000.

Table 1 shows a summary results for the TSC models with the best hyperparameters
for the test data. The results shown in the table are mean ± and one standard deviation
(STD) for each algorithm.

Table 1. Summary results for TSC models with the best hyperparameters on the test data.

TSC F1 Control F1 ASD Balanced Accuracy

WEASEL 0.56 ± 0.11 0.60 ± 0.04 0.60 ± 0.05

TSF 0.58 ± 0.08 0.58 ± 0.08 0.63 ± 0.07

TS-KNN 0.60 ± 0.08 0.56 ± 0.07 0.59 ± 0.07

ROCKET 0.66 ± 0.10 0.63 ± 0.07 0.66 ± 0.10

Table 1 shows that the best results were obtained with the ROCKET algorithm, al-
though the STD was the greatest. This was likely due to the very random nature of
ROCKET that may have been improved through ensembling or increasing the number
of ROCKET kernels to stabilize the results. The current ROCKET implementation was a
trade-off between reliability and complexity of the computation. The worst results were
obtained with the WEASEL algorithm and were likely the result of the coarse nature of the
dictionary-based ERG signal description, which was not fine enough for the task.

3.3. Analysis of Algorithm Errors

Error analysis in machine learning algorithms is an important step in the process of
developing models, which helps to improve their quality and make more robust conclu-
sions. The methods .predict() and .predict_proba() were used to obtain predictions from
the model, but each of them did it differently, which affected the approaches to error
analysis. The .predict() method returned the classes that objects belonged to based on the
trained model. For classification problems, this method is often used to determine the final
prediction. The .predict_proba() method returns the probabilities of objects belonging to
each class. This is useful if additional information about the uncertainty of the predictions is
required. For each algorithm, we used .predict() and .predict_proba() to obtain the model’s
prediction and prediction probabilities, respectively; then we compared them with the
y_test values that were calculated.

When analyzing the obtained results, the ROCKET algorithm was selected as the one
having the fewest mistakes from the models that were tested.
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Before plotting the average signal of the original data, a condition was added for
dividing it into subgroups by comparing the values of y_train and y_pred for each value of
the array, as follows:

• If y_train was equal to 1 and y_pred was equal to 0, then mark the array element as
Falsely ASD (or false positive).

• If y_train was 0 and y_pred was 1, then mark the array element as Falsely control (or
false negative).

• If y_train was 0 and y_pred was 0, then mark the array element Correct control (or
True Negative).

• If y_train was equal to 1 and y_pred was equal to 1, then mark the array element
Correct ASD (or true positive).

As a result, four data arrays were obtained for the best-performing algorithm
(ROCKET), which were then visualized using the same technique previously described in
Figures 4 and 5.

Figure 4. ROCKET classification examples of ERG waveforms assigned correctly or incorrectly to
each class of ASD or control: true positive for ASD (top), false positive for ASD (bottom).
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Figure 5. ROCKET classification examples of ERG waveforms assigned correctly or incorrectly to
each class of ASD or control: false negative for control (top), true negative for control (bottom).

Figures 4 and 5 analysis shows some common patterns: generally the shape of signals,
classified as true-positive and true-negative ones, each having three local amplitude peaks
at 40 ms, 45 ms, and 55 ms. What is different between these two groups was the lower
amplitude of the b-wave peak at 55 ms for the true-positive signals. False-negative signals
had the common factor of not having a pronounced peak at 40 ms. The common factor for
the false-positive signals was a high amplitude of the b-wave peak at 55 ms.

3.4. Explanation of the Signals

The explanation of the model classification results was made with the SHAP algorithm.
The plotted results for WEASEL, TSF, TS-KNN ,and ROCKET classifiers are shown in
Appendix A following the logic: Figures A1, A2,A4,A5, A7, A8, A10 and A11 show the
plots of four signals with the SHAP explanation given from true-positive, false-positive,
false-negative and true-negative results obtained by the corresponding TSC, where the
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positive class corresponds to the ASD group and the negative class corresponds to the
control group. The colors indicate the relation of the time step to either positive (ASD
group) or negative (control group) class: the red marker implied that the time step makes a
contribution to the positive class prediction (ASD); the blue marker implied that the time
step makes a contribution to the negative class prediction (control). The white marker
indicated that the time-step made no significant contribution to either of of the classes.
Additionally, the size of the marker is related to the absolute value of the SHAP coefficients,
which helps to identify the regions of greatest importance for classification in the ERG time
series by visual inspection.

Additionally, Figures A3, A6, A9, and A12 display the summary of TSC explanations
with SHAP for the positive and negative classes for different signals.The positive values on
the SHAP plots are associated with time steps that increase the probability that the model will
make a correct prediction for ASD. Meanwhile, the negative values are associated with time
steps that decrease the probability that the model will make a correct prediction for ASD.

Signal analysis with SHAP allowed for the following conclusions regarding the algo-
rithm explanations.

• ROCKET results (see Figures A1, A2 and A3). The explanations of this algorithm were
the most sparse and not spread along the whole time series. Similar to the TS-KNN
algorithm, the ROCKET algorithm largely ignored the initial baseline part of the signal.
The most indicative parts for the predication were associated with the 35 ms and 45 ms
time steps, as well as spread throughout the final part of the signal.

• TS-KNN results (see Figures A4, A5 and A6). The first 25 ms of the signal was mostly
ignored by the algorithm. The most significant parts of the signals for positive class
prediction were associated with the 35–45 ms interval, as well as with the end part of
the signal. The significant part for negative class prediction was mostly located in the
35–45 ms region.

• WEASEL results (see Figures A7, A8 and A9). Throughout the entire signal, there were
significant deviations for both control and ASD individuals. The SHAP coefficients
were associated with the first part of the signal baseline (from 0 to 25 ms), as well as
significant contribution of the middle part (around 50 ms), and the end of the signal
(around 85 ms and 100 ms). In general, the WEASEL algorithm failed to highlight the
significant parts of the signal associated with the b-wave.

• TSF results (see Figures A10, A11 and A12). Similar to the WEASEL algorithm through-
out the entire signal, there were significant deviations for both control and ASD
individuals. The most significant signals parts associated with importance for clas-
sifications were related to the 50 ms, 60 ms, 75 ms, and 100 ms marks. Overall, the
TSF algorithm used the whole signal for prediction but failed to identify specific local
significant regions of the signal.

Overall, the TS-KNN and ROCKET algorithms were most suitable for predicting or
classifying the ASD and control groups based on the central and end parts of the signal.
In contrast, WEASEL and TSF algorithms were not suitable for accurately predicting
or classifying between the ASD and control groups, because they failed to find local
informative parts of the signal.

3.5. Discussion

The application of the TSC approach to visualizing important regions of the ERG time
series that are important for classification offers a new approach to improve a machine
learning model for disease classification with the ERG. Future applications may include
retinal disorders such as Congenital Stationary Night Blindness for phenotypic classi-
fication [47,48], glaucoma [49,50], neurodevelopmental [5,6,51], and neurodegenerative
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disorders [52–56]. The advantage of the TSC modeling approach with SHAP provides
the clinician with a clear indication of not only the location but the magnitude of the
contribution each region makes to the classification of the class.

In the cases presented in this analysis, the TS-KNN and ROCKET algorithms both
correctly ignored the uninformative non-physiological part of the signal baseline from 0 to
25 ms. The ROCKET algorithm had the highest Balanced Accuracy of 0.66 with an SDV of
0.10. The performance was lower than previous analyses that used a larger dataset with
signal analysis (Balanced Accuracy of 0.88) for male ASD participants [6]. With one flash
strength and one eye, a higher Balanced Accuracy of 0.70 was achieved with a random
forest classifier [57]. A Balanced Accuracy of 0.81 was achieved using variable frequency
complex demodulation of the ERG signal [58]. Despite the lower Balanced Accuracy for
classification, the additional information provided by the SHAP analysis of the series
provides a clearer clinical picture of which parts of the ERG were the most important for
class classification from the algorithms.

For the case of ROCKET, the red markers indicated regions of the ERG waveform time
series that contributed to the true ASD classification. These were localized to the a-wave,
the second prominent OP peak, and the descending portion of the b-wave. These regions of
the ERG waveform have previously been identified as markers for ASD classification. The
reduced a-wave has been noted previously [5] as with the OPs and the amplitude of the
b-wave [4,5], but the descending portion of the b-wave has not been highlighted previously
and may indicate subtle changes in the off-bipolar and ganglion cell contributions to
the later part of the signal that were not evident in traditional time domain markers
using the photopic negative response [51]. Because the neural generators of the ERG
have been described with the light-adapted a-wave shaped by the cone photoreceptors
and postsynaptic OFF-pathway neurons with the b-wave formed and shaped by bipolar,
amacrine, glial and ganglion cells [8], it is possible to infer that the neurotransmitters
involved including glutamate, GABA, and dopamine may be contributing to the altered
signaling and therefore the shape of the ERG in this ASD population. Future studies may
attempt to investigate genotype–phenotype correlations with TSC parameters to provide
greater insights.

TSC with SHAP enables a new perspective on where and to what extent regions of the
ERG signal contribute to the classification of disorders. This approach has not been incorpo-
rated previously in visual electrophysiology where clinical interpretation of waveforms is
an important aspect of diagnosis and classification [2]. With the potential broadening of the
scope of practice for visual electrophysiology within neurological disorders, both TSC and
ROCKETmay provide key regions to be identified and linked with different neurological
disorders ranging from schizophrenia to Parkinson’s disease [3,18,59].

In practice, the use of TSC provides an important new methodological approach
that helps to identify local regions of interest that contribute to group classification con-
tained within the ERG time series signal. Although machine learning algorithms and deep
learning models have been applied to this dataset previously, with SHAP analysis [6,57],
the additional information provided by TSC and SHAP with respect to local features of
importance was not evident. In clinical cases, identifying local subtle variations in the
ERG waveform could support early identification of retinal disorders. Other statistical
approaches that remodel the ERG signal may also provide supporting methods with which
to identify regions that are correlated or have an altered trajectory with respect to the time
of the registered time series [46]. The application of TSC to the classification of ERG signals
builds on these previous studies that have applied signal analysis and statistical methods
to develop robust classification models to exploit the ERG’s potential [18] to classify retinal
and CNS disorders [3].
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The study [60] provides compelling evidence that altered retinal function, as measured by
ERG, is present not only in individuals with ASD but also in their unaffected family members,
particularly mothers and siblings. These findings suggest that ERG may serve as a potential
early biomarker for ASD risk, even before behavioral symptoms emerge. Since motion
coherence deficits and ERG alterations follow a familial pattern, ERG could be considered for
screening in genetically predisposed populations. More longitudinal and genetic studies are
needed to validate the predictive utility of ERGs in early ASD detection [60].

4. Conclusions
This study demonstrates the feasibility of applying well-known TSC techniques—WEASEL,

TS-KNN, ROCKET, and TSF—to the classification of ERG signals. To our knowledge, this
represents an initial step towards adapting these methods for ERG-based diagnostics.
The default implementation of the analyzed TSC methods showed less accurate results
than Deep Learning TSC could provide, but illustrated a wide space for domain-specified
explanation using SHAP. Two TSC algorithms, ROCKET and TS-KNN, showed the most
accurate results and a better-defined explanation, as the most significant parts according to
the SHAP interpretation were those that were often looked at by clinicians where the a- and
b-wave are formed. At the same time, WEASEL and TSF algorithms tended to overlook
parts of the signals that were considered to be inconsequential parts (baseline) prior to the
stimulus onset.
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Appendix A

Figure A1. Illustration of signals classified by ROCKET as true positive (top), false positive (bottom),
and their explanation with SHAP. Red color corresponds to the points of signal that SHAP explanation
associates with positive class, blue color to the points of signal that SHAP explanation associates with
Negative class, white color to the points of signals that SHAP explanation considers unimportant for
classification. Radius of the point reflects the strength of the importance for the particular class.

Illustration of signals classified by ROCKET as true positive (top) and false positive
(bottom), with SHAP-based explanations. Red markers indicate time steps contribut-
ing to classification as ASD, blue markers—to control. The size of each marker reflects
the magnitude of its influence. In the true-positive case, red markers are concentrated
around 35–55 ms, corresponding to the a-wave and b-wave regions. In the false-positive
case, red markers are more dispersed, suggesting misclassification due to non-specific
signal features.
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Figure A2. Illustration of signals classified by ROCKET as false negative (top), true negative (bottom),
and their explanation with SHAP. Red color corresponds to the points of signal that SHAP explanation
associates with Positive class, blue color to the points of signal that SHAP explanation associates with
negative class, white color to the points of signals that SHAP explanation considers unimportant for
classification. Radius of the point reflects the strength of the importance for the particular class.

Signals classified by ROCKET as false negative (top) and true negative (bottom), with
SHAP explanations. Blue markers dominate in the true negative case, especially around
40–60 ms, indicating correct identification of control signals. In the false-negative case,
the absence of strong red markers suggests insufficient ASD-specific features, leading to
misclassification.
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Figure A3. Summary of ROCKET explanation for positive (ASD) class (top) and negative (control)
class (bottom). Each line corresponds to separate signal explanation. Y-axis deviations are associated
with explanations of true predictions (upwards) and false predictions (downwards). The amplitude
reflects the strength of the importance for the particular class.

Summary SHAP explanation for ROCKET: (a) Positive class (ASD)—red markers
concentrated around 35–45 ms and late signal regions. (b) Negative class (control)—blue
markers mainly in the central part of the signal. This confirms ROCKET’s focus on clinically
relevant ERG regions.

Figure A4. Cont.
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Figure A4. Illustration of signals classified by TS-KNN as true positive (top), false positive (bottom),
and their explanation with SHAP. Red color corresponds to the points of signal that SHAP explanation
associates with positive class, blue color to the points of signal that SHAP explanation associates with
negative class, white color to the points of signals that SHAP explanation considers unimportant for
classification. Radius of the point reflects the strength of the importance for the particular class.

Signals classified by TS-KNN as true positive (top) and false positive (bottom), with
SHAP explanations. TS-KNN emphasizes the 35–45 ms interval. In the true-positive case,
the red markers are localized and strong. In the false-positive case, red markers are more
scattered, indicating less confident classification.

Figure A5. Cont.
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Figure A5. Illustration of signals classified by TS-KNN as, false negative (top), true negative (bottom),
and their explanation with SHAP. Red color corresponds to the points of signal that SHAP explanation
associates with positive class, blue color to the points of signal that SHAP explanation associates with
negative class, white color to the points of signals that SHAP explanation considers unimportant for
classification. Radius of the point reflects the strength of the importance for the particular class.

Signals classified by TS-KNN as false negative (top) and true negative (bottom), with
SHAP explanations. Blue markers dominate in the true negative case, especially in the
35–45 ms region. The false-negative case lacks strong red markers, suggesting weak features
of the ASD-specific signal.

Figure A6. Summary of TS-KNN explanation for positive (ASD) class (top) and negative (control)
class (bottom). Each line corresponds to a separate signal explanation. Y-axis deviations are associated
with explanations of true predictions (upwards) and false predictions (downwards). The amplitude
reflects the strength of the importance for the particular class.
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Summary SHAP explanation for TS-KNN: (a) Positive class—red markers in 35–45 ms
and end of signal. (b) Negative class—blue markers in the same region. TS-KNN effectively
identifies the central ERG features for classification.

Figure A7. Illustration of signals classified by WEASEL as true positive (top), false positive (bottom),
and their explanation with SHAP. Red color corresponds to the points of signal that SHAP explanation
associates with positive class, blue color to the points of signal that SHAP explanation associates with
negative class, white color to the points of signals that SHAP explanation considers unimportant for
classification. Radius of the point reflects the strength of the importance for the particular class.

Signals classified by WEASEL as true positive (top) and false positive (bottom),
with SHAP explanations. Markers spread across the entire signal, including the base-
line (0–25 ms), which is physiologically uninformative. This suggests that WEASEL lacks
specificity in feature selection.
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Figure A8. Illustration of signals classified by WEASEL as false negative (top), true negative (bottom),
and their explanation with SHAP. Red color corresponds to the points of signal that SHAP explanation
associates with positive class, blue color to the points of signal that SHAP explanation associates with
negative class, white color to the points of signals that SHAP explanation considers unimportant for
classification. Radius of the point reflects the strength of the importance for the particular class.

Signals classified by WEASEL as false negative (top) and true negative (bottom), with
SHAP explanations. Similar to A7, the markers are broadly distributed, including the
baseline and late signal regions. This reduces interpretability and clinical relevance.
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Figure A9. Summary of WEASEL explanation for positive (ASD) class (top) and negative (control)
class (bottom). Each line corresponds to separate signal explanation. Y-axis deviations are associated
with explanations of true predictions (upwards) and false predictions (downwards). The amplitude
reflects the strength of the importance for the particular class.

Summary SHAP explanation for WEASEL: (a) Positive class—red markers across
baseline and mid-signal. (b) Negative class—blue markers similarly dispersed. WEASEL
fails to isolate clinically meaningful ERG regions.

Figure A10. Cont.
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Figure A10. Illustration of signals classified by TSF as true positive (top), false positive (bottom), and
their explanation with SHAP. Red color corresponds to the points of signal that SHAP explanation
associates with positive class, blue color to the points of signal that SHAP explanation associates with
negative class, white color to the points of signals that SHAP explanation considers unimportant for
classification. Radius of the point reflects the strength of the importance for the particular class.

Signals classified by TSF as true positive (top) and false positive (bottom), with
SHAP explanations. Markers are present throughout the signal, including the base-
line and late regions. TSF does not focus on localized ERG features, leading to reduced
classification accuracy.

Figure A11. Cont.
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Figure A11. Illustration of signals classified by TSF as false negative (top), true negative (bottom), and
their explanation with SHAP. Red color corresponds to the points of signal that SHAP explanation
associates with positive class, blue color to the points of signal that SHAP explanation associates with
negative class, white color to the points of signals that SHAP explanation considers unimportant for
classification. Radius of the point reflects the strength of the importance for the particular class.

Signals classified by TSF as false negative (top) and true negative (bottom), with SHAP
explanations. Blue markers are present in the signal, but not concentrated in clinically
relevant regions. This suggests TSF’s reliance on broad signal intervals rather than specific
ERG features.

Figure A12. Summary of TSF explanation for positive (ASD) class (top) and negative (control)
class (bottom). Each line corresponds to a separate signal explanation. Y-axis deviations are associated
with explanations of true predictions (upwards) and false predictions (downwards). The amplitude
reflects the strength of the importance for the particular class.
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Summary SHAP explanation for TSF: (a) Positive class—red markers at 50 ms, 60 ms,
75 ms, and 100 ms. (b) Negative class—blue markers in similar regions. TSF uses the entire
signal for prediction, but lacks precision in identifying key ERG components.
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